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The theory of stochastic transcription termination based on free-energy competition I requires two
or more reaction rates to be delicately balanced over a wide range of physical conditions. A large

body of work on glasses and large molecules suggests that this should be impossible in such a large
system in the absence of a new organizing principle of matter. We review the experimental literature
of termination and find no evidence for such a principle but many troubling inconsistencies, most

notably anomalous memory effects. These suggest that termination has a deterministic component
and may conceivably be not stochastic at all. We find that a key experiment by Wilson and von
Hippel 2 allegedly refuting deterministic termination was an incorrectly analyzed regulatory effect
of Mg _+ binding.

PACS numbers: 87.15.-v, 82.20.Pm, 61.43.Fs

I. INTRODUCTION

The branching ratio of the termination process in gene
transcription is balanced. In the case most thoroughly

studied, p-independent termination in procaryotes, con-
ventional gel experiments performed in vitro find a frac-

tion P of elongating RNA polymerase reading through
the termination sequence with Iln(1/P- l)l < 4 essen-

tially always, even though P is different for different ter-
minators and can be made to exhibit order-1 changes

by perturbing the environment. This effect is astonish-

ing from the standpoint of microscopic physics because a
stochastic decision to read through or not requires a com-

petition of transition rates - quantities of inverse time -
that must be nearly equal for the branching to be bal-

anced. RNA polymerase, however, is more the size of a

glass simulation than a small molecule and thus possesses
a broad spectrum of natural time scales spanning many
decades. Without some physical reason for a particu-

lar scale to be preferred, rate competition ought to have
been severely unbalanced, meaning that one event occurs

essentially always and the other never. Balanced branch-
ing in termination has been implicated in transcription

regulation in a few cases, 3 but its broader significance,
especially its robustness, is still a mystery.

In this paper we examine the experimental facts rele-

vant to the physical nature of termination with the goal
of determining what, if any, principle selects the time
scale for stochastic rate balance. Our conclusion is both

surprising and unsettling. We find no evidence for such a

principle, but glaring weaknesses in the case for stochas-
ticity and a large body of unexplained experimental re-
sults pointing to a termination decision that is partially

deterministic. In light of the inaccessability of systems
this large to ab-initio computation we conclude that tran-
scription termination is a fundamentally unsolved prob-

lem in mesoscopic physics and an ideal target for the

emerging techniques of nanoscience.

II. TERMINATION EFFICIENCY

The simplest termination sequences are the p-

independent terminators of procaryotes, which are capa-
ble of causing polymerase to terminate in vitro in the ab-

sence of the p protein factor. A representative sampling
of these is reproduced in Table I. This differs from lists
that have appeared in the literature before 4'5 by having

been rechecked against the fully-sequenced genome 6 and

expunged of "theoretical" terminators identified only by
computer search. They conform for the most part to the

motif of a palindrome of typically l0 base pairs followed
by a short poly-T stretch, although there is tremendous

variety in the length and composition of the palindrome,
variation in the length of the poly-T stretch, and occa-
sional extension of the palindrome to include the poly-
T stretch. This enormous variability contrasts with the

simplicity of stop codons, which terminate protein syn-
thesis by ribosomes and have no other function.

p-independent terminators are characterized by "effi-
ciencies", i.e., the fraction of assayed transcripts that ter-
minate. These rarely take on extreme values close to 1 or
0 when measured in vitro. In cases where a measurement

in vivo exists as well the latter is usually larger 7 and is

occasionally unmeasurably close to 1. Balanced termina-

tion efficiency is commonly observed in vivo as well, how-
ever. Table II shows results from a particularly careful

study 7 in vitro in which termination probabilities in E.
coli for wild-type terminators, mutant terminators, phage
terminators, s and terminators from S. Boydii were mea-

sured under identical conditions. Despite the great vari-

ety of these sequences the termination efficiency runs only



Sequence 4,5

CGTTAATCCGCAAATAACGTAAAAACCCGCTTCGGCGGGTTTTTTTATGGGGGGA

CAGTTTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGG

CGTACCCCAGCCACATTAAAAAAGCTCGCTTCGGCGAGCTTTTTGCTTTTCTGCG

ACACTAATCGAACCCGGCTCAAAGACCCGCTGCGGCGGGTTTTTTTGTCTGTAAT

AGTAATCTGAAGCAACGTAAAAAAACCCGCCCCGGCGGGTTTTTTTATACCCGTA

TCTCGCTTTGATGTAACAAAAAACCCCGCCCCGGCGGGGTTTTTTGTTATCTGCT

GAGTAAGGTTGCCATTTGCCCTCCGCTGCGGCGGGGGGCTTTTAACCGGGCAGGA

CGATTGCCTTGTGAAGCCGGAGCGGGAGACTGCTCCGGCTTTTTAGTATCTATTC

CGTAAAGAAATCAGATACCCGCCCGCCTAATGAGCGGGCTTTTTTTTGAACAAAA

GCGCAGTTAATCCCACAGCCGCCAGTTCCGCTGGCGGCATTTTAACTTTCTTTAA

AAATCAGGCTGATG_QTGGTGACTTTTTAGTCACCAGCCTTTTTGCGCTGTAAGG

AGGAAACACAGAAAAAAGCCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACCAA

AGCACGCAGTCAAACAAAAAACCCGCGCCATTGCGCGGGTTTTTTTATGCCCGAA

CCCGTTGATCACCCATTCCCAGCCCCTCAATCGAGGGGCTTTTTTTTGCCCAGGC

ACACGATTCCAAAACCCCGCCGGCGCAAACCGGGCGGGGTTTTTCGTTTAAGCAC

GAAACGGAAAACAGCGCCTGAAAGCCTCCCAGTGGAGGCTTTTTTTGTATGCGCG

CTTAACGAACTAAGACCCCCGCACCGAAAGGTC_TTTTTTTGACCTTAA

CCGCCCCTGCCAGAAATCATCCTTAGCGAAACGTAAGGATTTTTTTTATCTGAAA

CATCAAATA_AAQAAAA_CTCAGTCGGA_GACTGGG_TTTTGTTTTATCTGTT

TCCGCCACTTATTAAGAAGCCTCGAGTTAACGCTCGAGGTTTTTTTTCGTCTGTA

GCATCGCCAATGTAAATCCGGC¢CGCCTATGGCGGGCCGTTTTGTATGGAAACCA

TGAATATTTTAGCCGCCCCA_TCAGTAATGACTGGG_C_TTTTTTATTGGGCGAA

ATTCAGTAAGCAGAAAGTCAAAAGCCTCCGACCGGAGGCTTTTGACTATTACTCA

AGAAACAGCAAACAATCCAAAACGCCGCGTTCAGCGGCGTTTTTTCTGCTTTTCT
CTGGCATAAGCCAGTTGAAAGAGGGAGCTAGTCTCCCTCTTTTCGTTTCAACGCC

GCATCGCCAATGTAAATCCGGCCCGCCTATGGCGGGCCGTTTTGTATGGAAACCA

TGCGAAGACGAACAATAAGGCCTCCCAAATCGGGG_GCCTTTTTTATTGATAACA

ACGCATGAGAAAGCCCCCGGAAGATCACCTTCCGGGGGCTTTTTTATTGCGCGGT

CATCAAATAAAA_AAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTT

GGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACA

AATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTT

CTTTTTGGCGGAGGGCGTTGCGCTT_CAACCTATTTTTACGCGGCGGTG

Name

rpoC t
MI-RNA

sup

L17

rpm
t2

deo t

trp a

trp t

rplL t

thr a

leu a

pyrBI a

ilvB a

pheS a

ilvGEDA a

rrnC t

rrnD t

rrne (G) t

frdB t

spot42-RNA

tonB t

gins T

rplT t

ampC a

phe a

hisG a

rrnB tl

rrnB t2

lacI tII

uvrD a

Address _

4187152

3267812

0695610

1260102

3437202

3808820

3306624

4619189

1321015

1314395

4178530

0000263

0083564

4469985

3850449

1797160

3948053

3944645

3421006

0228998

4376529

4047542

1309824

0707159

1797371

4376529

2735697

2088121

4169333

4169493

0365588

3995538

4- Reference

+ RNA polymerase operon b'r
RNA of RNase pSS

supBC tRNA operon 59

Nucleotide synthesis _°

Ribosomal RNA operon 51

Ribosome rpm operon 62

Polynucleotide phosphorylase _a

+ deo operon 64

tryptophan synthesis 8_

- tryptophan synthesis 66

+ Pdbosomal proteins L7]L1267

+ threonine operon
.os

leucine synthesis 69

pyrimidine synthesis 7°

ilvB operon 71

- Phenylalanyl-tRNA synthetase 72

+ ilvGEDA operon 7_

+ Ribosomal RNA operon TM

+ Ribosomal RNA operon 7s

+ Ribosomal RNA operon 7_

_marate reductase 7_

+ spot42 R.NA 7s

+ Membrane protein _

+ Glutaminyl-tRNA synthetase s°

Ribosome protein L20 s_

_-lactamase s2

+ Phenylalanine operon s3

+ ATP synthesis s4

+ Ribosomal RNA operon sS's_

+ Ribosomal RNA operon sS'ss

Lactose synthesis s7

+ DNA helicase II ss

TABLE I. p-independent terminators in E. coli taken primarily from Brendel et al. 4 These are oriented in the reading

direction and are aligned at the poly-T stretch. The palindrome is underlined. The beginning and end of the selected sequences

have no absolute meaning but simply follow the convention of d'Aubenton et al. s The address identifies the location in the

standard E. coli genome 6 of the left-most nucleotide in the table.

Sequence Name

GGCTCAGTCGAAAGACTGGGCCTTTCGTTTTAAT rrnB tl

TCAAAA_CCTCCGACCGGAGGCTTTTGACTATTA tonB t

CCAGCCCGCCTAATGAGCGGGCTTTTTTTTGAAC trpa

CCAGCCCGCCTAATGAGCGGGCrTTTGCAAGGTT trp a 1419

ICCAGCCCGCCTAATAAGCGGGCTTTTTTTTGAAC trp a L126_

CCAGCCCGCCTAATAAGCGGACTTTTTTTTGAAC trp a L1531

CrGGCTCACCTTCGGGTGGGQQTTTCTGCGTTTA T7Te

GGCTCACCTTCACGGGTGAGCCTTTCTTCGTTCX T3Te

GGCCTGCTGGTAATCGCAGGCCTTTTTATTTGGG tR2

AAACCACCGTTGGTTAGCGGTGGTTTTTTGT/.[_ RNA I

%T

844- 1

19=£1

71 :I: 2

24-1

654-4

8-4-4

884-2

144-2

494-4

734-4

TABLE II. Termination efllciencies measured in vitro. 7

The first 3 terminators are native to E. coll. These are fol-

lowed by 3 mutants, 3 phage terminators, s and one from S.

Boydii. Far-right underlined sequences are termination zones.

Sequence

GTTAATAACAGGCCTGCTGGTAATCGCAGGCCTTTTTATT

GTTAATAACA_GGGA_GTGGTAATCCGTCCCCTTTTTATT

TAATAACAGGCCTGGCTGGTAATCGCCAGGCCTTTTTATT

CCGGGTTAATAACAGGCCTGCTTCGGCAG_CCTTTTTATT

CGGGTTATTAACAG_G__TGGTAATCG_GGCTTTTTATT

ATAACAGGGGACGTGGTAATCGCCAGCAGGCCTTTTTATT

GTTA_T_AAAG_CCTGCTGGTAATCGCA_CCTTTTTATT

GGTTCTTCTCGCC_TGGTAATC_TTTTTATT

Name

tR2

tR2-6

tR2-11

tR2-12

tR2-13

tR2-14

tR2-16

tR2-17

%q

40

56

54

69

II

20

36

67

TABLE III. Termination efliciencies for modified versions

of the phage l terminator tR2. _

from 2% to 88%. Many other researchers report

similar values for terminators in E. coli and other

bacteria, 9 including artificially altered terminators) °



l Sequence
CCAACCGCTCC_CCACTTTTCA
,ACCC GC--  GAT TT TC'
CAGCCGCCAGTTCCGCTGGCGGCTTTTAA
ACcAccccGccTAAT_TTIGC

Name lrpo2031
trp - O I 0
trpC3021 S I I

trp t [ 25 [ 45 [
trpal4191 3 ] 35 [
trpa i35 ] 65 ] 80 [

TABLE IV. Termination ei_ciences for wild-type E. coli

polymerase (rpo+) and mutant polymerase (rpo203). TM trp t
is native to the genome. The rest are either mutants or syn-
thetic.

The results in Tables III and IV show balanced ter-

mination for modified versions of the phage terminator
tR21l and for mutant polymeraseJ 2 This also makes

order-1 changes to the efficiencies themselves. Simi-
lar effects were reported by other researchers 9'13 with

different mutant polymerases. Modifications up to 20

base pairs upstream and downstream of the terminator
cause large changes to the efficiency without causing it to
unbalance, z Thus balanced termination efficiency is the
norm rather than the exception.

III. LARGE MOLECULES AND GLASSES

Large systems are qualitatively different from small
ones. 14 The specific heat of all non-crystalline matter in
macroscopic quantities - including biological matter - is

proportional to T at low temperatures./5 This behavior is
fundamentally incompatible with the linear vibration of
the atoms around sites, and is caused by collective quan-

tum tunneling of atoms between energetically equivalent
"frustrated" configurations. 16 It contrasts sharply with

the T 3 behavior of crystals with small unit cells. Glasses
also exhibit stretched-exponential time dependence in re-

sponse to perturbations, i.e., of the form e×p(-At _) with

/_ < 1, indicating a broad spectrum of decay rates rather
than just one. They also exhibit memory effects, such as
"remanence" in spin glasses 17 or the well-known failure of

ordinary silica to crystallize without annealing. This be-
havior is universal and robust. All non-crystalline macro-
scopic matter exhibits hysteresis, metastability, a broad

spectrum of relaxation times, and memory.
How large a system must be before it can exhibit

such behavior is not known, as the relevant experiments

are difficult to perform except on macroscopic samples,
but there are many indications that even medium-sized

proteins have giass-like properties. Crystals of myo-

globin, a protein with a molecular weight of only 17,000,
have linear specific heats at low temperatures is and

exhibit stretched-exponential response to photodissoci-
ation pulses. 19 Denatured proteins refold on a variety
of time scales ranging from nanoseconds to seconds, 2°

and amino acids sequences chosen at random will not
fold at all. 21 Permanent misfolding of proteins with

molecular weights of only 30,000 has been implicated in

prion diseases. 22 Many enzymes exhibit hysteresis in their

catalytic rates. 23'24 The activity of cholesterol oxidase
of Brevibacterium sp., a protein with molecular weight

53,000, was recently shown by fluorescence correlation
techniques to have a memory effect persisting about 1
second under normal conditions at room temperature. 25

Other notable e×amples include wheat germ hexokinase

(moh wt. 50,00026) with a half-life of 2 minutes, 27 rat
liver glucokinase (mol. wt. 52,0002s) at 1 minute, 23 and

yeast hexokinase (tool. wt. 50,000) at 1-2 minutes. 2_
Thus RNA polymerase complexes, which have a molec-

ular weight of 379,000 and are comparable in size to the
largest computer simulations of glasses ever performed,
are good candidates for systems that exhibit glassy be-
havior.

Glassiness in enzymes is not always easy to observe.

The mnemonic effect in yeast hexokinase occurs when it
is preincubated with MgATP and free Mg 2+ and the re-

action is started with glucose, or preincubated with glu-
cose and free Mg 2+ and started with MgATP, but not if

the enzyme is preincubated with glucose and metal-free
ATP and then started with Mg2+. 23 Mnemonic behav-

ior can be destroyed by "desensitizing" the enzyme with
contaminants. 26 Time scales can depend on enzyme, sub-

strate, product, activator and effector ligand concentra-
tions as well as pH, buffers, and temperature. 23'29'3° Be-

fore hysteresis and memory effects were recognized, early
investigators generally adjusted such reaction conditions
until the "improper" behavior was eliminated. 23

IV. POLYMERASE STATES

While the size of RNA polymerase makes it plausible

to expect glassy behavioron purely theoretical grounds,
several direct lines of evidence indicate that the enzyme

exhibits a spectrum of multiconformational, mnemonic

and hysteretic behavior:

1. Polymerase has a catalytic mode distinct from
RNA synthesis, as it can cleave the RNA transcript

through hydrolysis (rather than pyrophosphorol-
ysis, the reverse reaction of RNA synthesis), 3_
with the cleavage reaction requiring Mg 2+,3_ being

template-dependent, 32 changing the polymerase
footprint size, 33 and stimulated either by GreA
and GreB proteins 34'35 or by high pH (8.5-10.0). 36
The last effect was discovered serendipitously, go-

ing unobserved for decades because assay condi-
tions were being optimized to maximize elongation
rates, which occur at lower pH values (7.8-8.237). 36

. RNA polymerase mobilities in non-denaturing elec-
trophoresis gels show significant and discontim_-
ous variance while bearing nearly identical tran-

scripts or identical length transcripts with different
sequences. 3s These mobility variances are still ob-
served if the RNA transcript is first removed by

ribonuclease digestion. 39



3. RNApolymeraseternarycomplexesvarygreatly
in their stabilityand modeof bindingto DNA
(ionicor non-ionic)in a template-dependentman-
ner.Somecomplexesarestableagainstveryhigh
salt concentrations([K+] = 1 M), while others
(specifically those proximal to an upstream palin-

drome sequence) are salt-sensitive (completely dis-
sociating in concentrations as low as 20 mM K+).

However, the salt-sensitive complexes are stabilized
by millimolar concentrations of Mg 2+.4°

4. The size of the RNA polymerase footprint on the
DNA template measured by ribonuclease digestion

is significantly altered even at adjacent template
positions, suggesting that the enzyme assumes dif-
ferent conformations during elongation. 41

5. Guanosine tetraphosphate (ppGpp) inhibits the

rate of elongation on natural DNA templates but
not on synthetic dinucleotide polymer templates,
and does not inhibit elongation by competing with

NTP binding, but by enhancing pausing. It must
therefore bind to polymerase and modify its behav-

ior at an unrelated regulatory site in an allosteric
manner, rather than interfering with the substrate
binding site. 42

6. The stability of a stalled elongation complex de-

pends on whether the polymerase arrives at the
stall site via synthesis or pyrophosphorolysis. 43

7. Termination efficiencies are affected by transcribed
upstream sequences and untranscribed downstream

sequences adjacent to the terminator. 44

8. Stalling elongating polymerase complexes (via nu-
cleotide starvation) and then restarting them by
nucleotide addition perturbs pausing patterns 50-

60 base pairs downstream. 45

9. An elongating polymerase's Michaelis constants Ks
for NTPs vary over 500-fold for different DNA tem-
plate positions, 46 and for different templates, 47 al-

though these effects are not observed for synthetic
dinucleotide polymer templates. 47

10. The rate of misincorporation at a single site
for which the correct NTP is absent is signifi-

cantly different before and after isolation of ternary
complexes. 48

11. Stalled polymerase gradually "arrests" (i.e., is in-

capable of elongating when supplied with NTPs),
with the approximate half-time for arrest estimated
at 5 minutes 4° and 10 minutes 49 for different DNA

templates. The polymerase can continue elongat-
ing if reactivated by pyrophosphorolysis. 4°

12. Even after undergoing arrest, crosslinking exper-
iments show that the internal structure of poly-

merase gradually changes over the course of the
next hour. 49

13. Observations of single elongating RNA polymerase
molecules show that it has two elongation modes

with different intrinsic transcription rates and

propensities to pause and arrest. 5°

The possibility of metastability - through shape mem-

ory or the conditional attachment of factors - is di-
rectly relevant to the rate-balance conundrum because

it provides a simple alternative to balanced stochastic
branching that requires no physical miracles. If, for

example, the polymerase possessed a small number of
metastable configurational states and terminated deter-

ministically depending on which state it was in, then
balanced branching would be a simple, automatic con-

sequence of scrambling the state populations.

V. THERMAL ACTIVATION

The idea that polymerase memory is potentially rel-
evant to expression regulation is not new. 47 It is im-

plicit in the work of Goliger et al _1 and Telesnitsky and

Chamberlin 44 and even explicitly speculated by the latter
in print. However, because of the experimental evidence

supporting the stochastic model of termination 1 and the
widespread belief- unjustified, in our view - that pro-

teins equilibrate rapidly, this suggestion generated little
enthusiasm. A key experiment supporting the stochastic

model by Wilson and von Hippel 2 is both historically im-
portant and typical, so it is appropriate that we consider

it carefully.
Wilson and yon Hippel promoted and stalled RNA

polymerase 8 base pairs upstream of the tR2 termina-
tor hairpin of phage )_ in vitro, thermally equilibrated at
temperature T, and then launched it forward by adding

NTP. The results are reproduced in Fig. la. Termina-
tion occurred at sites 7, 8, and 9 base pairs downstream

of the beginning of the poly-T stretch (cf. Table II) with

probabilities P_ = NT/N, P8 = Ns/N and P9 = Ng/N.
The data were originally reported as a semi!ogarithmic
plot of 1//5 - I against temperature, where P7 = NT/N,

15s = Ns/(N - NT) and h = Ng/(N - N7 - Ns). They

concluded that all three branching probabilities P were
thermally activated and had distinctly different activa-

tion energies, lIowever, it is clear from Fig. la that this
conclusion is false. The three probabilities P are essen-
tially the same function and are well characterized by the
sum P = P7 + Ps + Pg, also plotted in Fig. la. This is

shown more explicitly in Fig. lb, where the ratios PT/P,

Ps/P, and P9/P are plotted against temperature. The
flatness of these curves shows that the branching ratios

among the three sites are essentially constant and in-
dependent of temperature within the error bars of the

experiment. Note that these fractions are also all of or-
der 1. Thus the alleged spread in activation energies was
an artifact of the plotting procedure.

Let us now consider the temperature dependence. It

may be seen from Fig. la that P saturates to 1 at 80
°C, the temperature at which Wilson and von IIippel

4
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FIG. 1. a) Temperature dependence of termination proba-
bility P for phage A terminator tR2 reported by Wilson and
von Hippel. 2 +, [3, and x denote the probabilities to termi-
nate 7, 8, and 9 nucleotides downstream from the beginning
of the poly-T stretch• The sum is shown as <>. b) +, [:3, and
x above divided by <> to make a branching fraction f. c)
Comparison of ionization model Eq. (1) with <) from a). The
ionization energy has been fit to eo = 0.7eV 06 kcals/mole)
and the quantity n/M 3/2 adjusted to make the curves match
at 30 °C. d) Prediction of Eqn. (1) for dependence on Mg _+
concentration compared with data of Reynolds et al. 7

report that the polymerase "will not elongate", i.e., has
stopped working properly. This suggests that the effect

has something to do with the overall mechanical integrity

of the enzyme rather than the termination process alone.

Guided by this observation we note that the activated be-
havior identified by Wilson and von IIippel is actually the
formula for conventional monomolecular chemical equi-

librium. The probability for a particle of mass M with a

binding energy of E0 to be ionized off the polymerase is
v

(),th = 4/-
27rh 21

P= l+ZeEo/kBTnX_h V_ ) ' (1)

where n is the concentration of this component and Z

is the change to the internal partition function that re-
sults from binding. If one makes the approximation that

£th is a slowly-varying function of temperature and can
thus be taken to be constant then this reduces to the for-
mula with which Wilson and von Hippel fit their data. 2

That it works may be seen in Fig. lc, where we plot the

total termination probability from experiment against

Eq. (1) with E0 = 0.7eV and Z adjusted to match ex-
periment at T = 30 °C. Thus reinterpreting this effect as
an ionization equilibrium, we may account for the high-

temperature intercept and weak temperature dependence
seen in Fig. lb in the following way: In addition to the
ionization state the polymerase possessesan internal con-

figurational memory with a number of states of order 10.
These code for termination at sites 7, 8 or 9. In the equili-

bration step, the polymerase molecules come to thermal
equilibrium and a fraction P of them become ionized.
All of these terminate at one of the three sites when

launched. The rest read through.
A candidate for the ionizable component is an Mg 2+

ion. In their studies of the effects of ion concentrations

on termination efficiency, Reynolds et al 7 discovered that

Mg 2+ has the strange and unique effect of increasing ter-
mination efficiency to 100% for all terminators studied
when reduced below 1 mM. The Mg _+ concentration in
the experiments shown in Fig. ld was l0 mM? Extrap-

olating at T = 30 °CS3 using Eq. (1) we obtain, with no
adjustable parameters, the fit to the [MgC12] dependence
found by Reynolds et al 7 shown in Fig. ld. The quality
of this fit suggests that Mg 2+ has a special function in

regulating transcription, and that the temperature de-
pendence in Fig. la is simply a thermal binding relation

for this ion. This is corroborated by the recent structural
studies of Zhang et al, 54 who report that polymerase crys-
tallized out of 10 mM solution of MgC12 has a Mg 2+ ion
bound at what appears to be the catalytic site of the

enzyme.
There is evidence for more termination channels other

than the ionization of Mg 2+. In Fig. 2 we reproduce re-

sults of Reynolds et al 7 showing that terminator efficien-
cies tend to saturate at large Mg 2+ concentration to val-

ues other than zero. The saturation values are balanced,

and there is an evident tendency of them to cluster. Both
effects are consistent with the polymerase executing an

instruction at the terminator to read through condition-

ally, even when the ionizable component is bound, if
its memory is appropriately set. There is obviously not
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FIG. 2. Termination efficiency as function of [MgCIz] for 10
terminators, as reported by Reynolds et al. 7 The terminators

are, top to bottom at the right edge, RNA I, TTTe, rrnB TI,
trp a Ll_6, trp a, tR2, TgTe,PI4, tonB t, and trp a L153.

enough data here to draw such a conclusion, however.
We note that Reynolds et al 7 also found order-1 effects

on the termination efficiency from C1- and K +, although

with the opposite sign. The fimction of these ions is not

yet known.

VI. ANTITERMINATION

What experiments can detect internal memory? In

general, one would look for cases in which polymerase

acts differently under apparently identical conditions,
suggesting an internal control mechanism of some kind.

Such thinking motivates the following hypothetical ex-
periment: one constructs a template with promoter P

followed by two identical terminators and flanking DNA
sequences in succession. If termination is stochastic, then

the branching ratio at T2 will be the same as that at T1.
If termination is deterministic and hysteretic, then the

branching ratios will be different, depending on details.
A passive termination at T1 would result in no termi-
nation at T2, since the polymerase that reads through
has been "polarized", i.e., selected for the memory set-

ting that codes for read-through. An active termination
at T1 would reprogram the memory there and cause a

termination probability at T2 different from that of Ta
but not necessarily zero. Variations of this design, e.g.,

adding more terminators, combining different termina-
tors, changing their order, etc., could, in principle, an-
swer more sophisticated questions, such as whether and

how polymerase is reprogrammed in active read-through
and whether non-equilibrium effects are important.

A few such experiments have already been performed

on DNA templates containing antiterminators (sequences
upstream of terminators that reduce termination efficien-

cies) and are thus less general than one would like, but
they strongly support the idea of polymerase memory.
There is indirect evidence in the case of N-antitermina-

tion of phage A, the case most studied, that the memory

is a physical attachment of the transcribed mRNA to the

Sequence
AATTflTGAGCGGATAACAATTTCACACAGGAAACAGGGAA

AATTGTGAGCGGATAACAATTTCACACAGGAAACAGAA..

AATTGTGAGCflGATAACAATTTCACACAGGAA...
AATTGTGAGCGGATAACAATTTCACGGAA...

AATTflTGAGCGGATAACAATTTCAGflAA...
AATTGTGAGCGGATAACAATTTCGGAA...
AA-_-_GAGCGGATAGGAA...

No Antiterminator

T7Te
-_i-

5I
73
45
71
75
88
99

trp a

52
99
99
99
66
75
80

TABLE V. Sequences and corresponding termination
probabilities at downstream TTTe and trp a for modified lac
antiterminators reported by Telesnitsky and Chamberlin. 44

Sequence
AAATCTGATAATTTTGCCAATGTTGTACGGAATTC

AAATCTGATAATTTTGCCAATGTTGGGAATTC...

AAATCTGATAATTTTGCCAATGTTGGAATTC...

AAATCTGATAATTTTGCCAATGGAATTC...

AAATCTGATAATTTTGCCGGAATTC...

AAATCTGATAATTTGGAATTC...
AAATCTGATAATTGGAATTC...

AAATCTGATAATGGAATTC...

AAA!CTGATAAGGAATTC...
AAATCGGAAT'['C...

o)p t
37
45
31
29
25
17
15
11

19
20

rpoC___tt
22

17

19
16

18

20
22

20

21

16

TABLE VI. Antiterminator sequences constructed by

Goliger et a151 from a promoter from phage 82, together with
the readthrough probabilities in vitro for downstream termi-
nators oop t and rpoC t. Note that these terminators are not
in series. The underlined sequence on the right is the EcoRI
linker.

polymerase to form a loop. _5 There is also evidence that
it is not true generally. 44

In 1989 Telesnitsky and Chamberlin 44 reported mem-

ory effects associated with the lac antiterminator found
just downstream of the Ptac promoter in E. coli. Their
key result is reproduced in Table V. Insertion of Iac 353
nucleotides upstream of the terminator makes different
order-1 modifications to the termination efficiences of

TTTe phage and trp a. The antiterminator contains a

palindrome, and the antitermination effect is sensitive to
modifications of the downstream 15-base-pair sequence.
3 copies of T7Te placed in tandem downstream of lac
showed that the antitermination effect is partially re-

membered through multiple terminators: the efficiencies
were 44%, 60%, and 90%, but without the antiterminator

they were 90%, >90%, and >90%.
In another experiment in vitro reported in 1989,

Goliger et a151 found that the E. coli terminator rpoC
t and phage terminators oop t and ts2 were strongly

antiterminated by a sequence they constructed ac-
cidentally. Their key result is reproduced in Ta-

ble VI. A phage 82 promoter was fused onto a

sequence containing either rpoC t alone or oop t

6



Sequence Name[
GAGCGCGGCGGGTTCAGGATGAACGGCAATGCTGCTCATTAGC purl
IGCGTGGTC____/AAGGA_TGTC--_GGTGCACGATAAAAACCCA putR

TABLE VII. Antitermination sequences putL and putR
from the Hong Kong phage HK022. 56

and rpoC t in tandem using the EcoRI linker sequence
GGAATTC. This resulted in unexpected antitermination
in vitro of both terminators, but of different sizes that

depended sensitively on the insertion point. The read-

through effects in the tandem experiments were unfortu-
nately poorly documented. One can see from Table V
that tile phage terminator responded more strongly in

this experiment than did rpoC t. However, the reverse
was the case in another experiment in which the antiter-
minator was a portion of the 6S RNA gene downstream

of a phage )_ pR' promoter, and in which factor NusA
was present. As a control, this latter experiment was

rerun with the phage terminator ts2, which terminated

at greater than 98% in all cases, seemingly immune to
antitermination.

King et a152 reported in 1996 that the purL and

putR antitermination sequences of the Hong Kong phage
IIK022, _6 shown in Table VII, caused downstream

readthrough of a triple terminator consisting of tR' from
phage A followed by the strong E. coli ribosome operon
terminators rrn B tl and rrn B t2. This effect was sensi-

tive to the choice of promoter. When purL was inserted
between the Ptac promoter and the triple terminator 284
nucleotides downstream and studied in vivo the termina-

tion probability was 50%. Substituting the phage A PL
promoter for Ptac under the same conditions resulted
in complete readthrough (though with wide error bars).

When this experiment was repeated in vitro the antiter-
mination effect was found to be smaller and to persist

through all three terminators. The read-through proba-
bilities at tR' were 34% and 31% for promotion by PL

and Ptac, respectively, but 57% and 27% for rrnB tl and
76% and 40% for rrnB b2. This result is incompatible

with statistical termination, for both the antitermina-
tion effect itself and the changes resulting from switching

promoters are order-1 effects that do not add. They also
reported that reduced Mg 2+ concentration destroys the
antitermination effect.

VII. CONCLUSION

In summary we find that the theory of stochastic ter-
mination, which requires natural selection to engineer a

physical miracle of balanced rates, is flawed, but that
there is ample evidence of a sophisticated and as-yet

poorly understood regulatory system in RNA polymerase
involving hysteresis, metastability, and long-term config-

urational memory, all robust phenomena in inanimate
matter. On this basis we predict that branching ratios of

identical terminators in series will differ by order-1

amounts very generally - specifically in the absence of
looping. We propose that the confusion surrounding

the existence of polymerase memory is symptomatic of
the larger problem that measurement of physical activ-

ity on the length and time scales appropriate to life has
thus far been impossible, and that overcoming this prob-
lem should be one of the high-priority goals of modern
nanoscience.
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